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Abstract—Breast cancer was the most commonly diag-
nosed cancer among women worldwide in 2020. Recently,
several deep learning-based classification approaches
have been proposed to screen breast cancer in mammo-
grams. However, most of these approaches require addi-
tional detection or segmentation annotations. Meanwhile,
some other image-level label-based methods often pay in-
sufficient attention to lesion areas, which are critical for di-
agnosis. This study designs a novel deep-learning method
for automatically diagnosing breast cancer in mammog-
raphy, which focuses on the local lesion areas and only
utilizes image-level classification labels. In this study, we
propose to select discriminative feature descriptors from
feature maps instead of identifying lesion areas using pre-
cise annotations. And we design a novel adaptive convolu-
tional feature descriptor selection (AFDS) structure based
on the distribution of the deep activation map. Specifically,
we adopt the triangle threshold strategy to calculate a spe-
cific threshold for guiding the activation map to determine
which feature descriptors (local areas) are discriminative.
Ablation experiments and visualization analysis indicate
that the AFDS structure makes the model easier to learn the
difference between malignant and benign/normal lesions.
Furthermore, since the AFDS structure can be regarded as
a highly efficient pooling structure, it can be easily plugged
into most existing convolutional neural networks with neg-
ligible effort and time consumption. Experimental results
on two publicly available INbreast and CBIS-DDSM datasets
indicate that the proposed method performs satisfactorily
compared with state-of-the-art methods.

Index Terms—Discriminative representation, feature
descriptor, activation map, mammogram classification.

I. INTRODUCTION

BREAST cancer was the most commonly diagnosed cancer
(24.5%) and the leading cause of cancer-related mortal-

ity (15.5%) among women worldwide in 2020 [1]. Incidence
rates of breast cancer have increased rapidly in South America,
Africa [2], and Asia [3] in recent years. Early-stage screening
with mammography can significantly reduce breast cancer mor-
tality in the long term [4]. In standard screening mammography,
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the craniocaudal (CC) view and the mediolateral oblique (MLO)
view are acquired for each breast [5]. Radiologists assign a stan-
dardized assessment to each screening mammogram according
to BI-RADS (Breast Imaging Reporting and Data System) [6].
However, accurately reading a screening mammogram is a chal-
lenging task that relies on the experience of radiologists [7]. In
some complicated cases, experienced radiologists may come to
different conclusions due to the presence of confounding and
inconspicuous lesions.

A computer-aided diagnosis (CAD) system, which recognizes
patterns in mammograms associated with breast cancer, may
assist radiologists with screening mammography [8], [9]. In
the last decade, various methods have been proposed to di-
agnose breast cancer based on mammography automatically.
Traditional machine learning methods that rely on hand-crafted
features from lesions must be designed according to specific data
meticulously [10]. Furthermore, these methods may have poor
portability because hand-crafted features are not data-driven.
Other works have employed deep neural networks (DNNs) that
can automatically learn features from raw data to detect lesions
in mammograms. However, most of these methods require
precise annotations, such as bounding boxes or segmentation
ground truths. Establishing such annotations requires expert
domain knowledge and considerable effort [11]. Recently, sev-
eral approaches have been proposed to diagnose whole mam-
mograms using image-level classification labels. In these ap-
proaches, the task of mammogram-based diagnosis is treated as
a binary classification task, which helps radiologists determine
the probability of malignancy for a given mammogram [12],
[13], [14], [15]. However, these approaches usually do not pay
enough attention to discriminative areas (local lesion areas).

The areas that contain lesions are discriminative and play a
crucial role in the diagnosis result. Usually, only a few small
lesions are contained in a mammogram. The lesions account for
only 2% to 4% of the total areas on a mammogram [16]. But even
if only one very small lesion is malignant, the whole mammo-
gram should be classified as malignant [17]. The background or
noise, which contributes little to diagnosis, accounts for a large
portion of a mammogram. Hence, identifying discriminative
lesion areas has potential advantages for mammogram-based
diagnosis.

Recent studies have shown the potential of using deep con-
volutional feature descriptors to represent local targets [18],
[19]. Most of those methods select discriminative descriptors
according to the activation map. However, these methods simply
use the maximum or mean value with a ratio as the threshold [19],
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[20], which could not change adaptively for different data distri-
butions. Furthermore, these methods introduce additional hyper-
parameters. In this study, we design a deep-learning method for
diagnosing breast cancer in mammography according to image-
level classification labels. For this method, a novel adaptive
convolutional feature descriptor selection (AFDS) structure is
designed based on the histogram of the activation map.

Specifically, after feature maps are generated by convolu-
tional neural networks (CNNs), the proposed method performs
channel-wise average pooling on the feature maps to obtain the
activation map. The values in the activation map are related
to the probability of malignancy for each corresponding area
in mammograms. So it is feasible to select suspicious lesion
areas according to the activation map. In this study, we observe
that the activation map of a mammogram usually exhibits a
highly skewed distribution with an extremely high peak. So
we adopt the triangle threshold strategy [21], which could deal
with this condition better, to calculate a specific threshold for
guiding the activation map to determine which feature de-
scriptors are discriminative. As the triangle threshold can be
calculated adaptively, the proposed AFDS structure does not
require any additional hyperparameters or training parameters.
In addition, the AFDS structure can be regarded as a pooling
structure. It could be easily plugged into existing CNN mod-
els to replace average-pooling or max-pooling with negligible
consumption.

To evaluate the performance of the proposed method, we
conducted several experiments on two commonly used publicly
available datasets — the INbreast dataset and the CBIS-DDSM
dataset. The results demonstrate that the proposed AFDS method
could achieve state-of-the-art classification performance on both
datasets. The main contributions of this study can be summarized
as follows:

1) This study designs a deep learning method for diagnosing
breast cancer in mammography, which focuses on the
discriminative lesion areas and only requires image-level
classification labels.

2) This study proposes a novel AFDS structure based on
the histogram of the activation map, which calculates
the triangle threshold for guiding the activation map to
determine which feature descriptors (local areas) are dis-
criminative.

II. RELATED WORK

In this section, we briefly review the related work in two areas:
deep learning approaches for mammogram-based breast cancer
diagnosis and methods for convolutional feature descriptor se-
lection.

A. Deep Learning Approach for Mammogram-Based
Diagnosis

CNNs have achieved breakthrough performance in object
detection, image segmentation, and image classification [22],
[23], [24]. Recently, some approaches have been proposed to
apply CNNs to diagnose breast cancer from mammograms [25],
[26].

Most of these approaches treat the automatic diagnosis as an
object detection or segmentation task [27], [28]. Hagos et al. [27]
proposed a patch-based model that learned symmetrical differ-
ences to detect masses on breasts. Dhungel et al. [28] proposed
a multi-stage detection network to perform mammogram clas-
sification. However, the detection or segmentation annotations
required in these methods are expensive and time-consuming.
In order to eliminate this problem, several approaches have also
been proposed to perform mammogram-based breast cancer
diagnosis using image-level classification labels [12], [13], [14],
[15]. Shu et al. [12] proposed two different pooling structures
and demonstrated they were more suitable for analyzing mam-
mograms than the commonly used max-pooling and average-
pooling structures. However, the number of regions in their
method needs to be fixed and pre-defined, which limits the
model’s effectiveness and flexibility. Zhu et al. [13] proposed
a multi-instance network for whole mammogram classification,
which divided mammograms into regions based on the feature
map layer to transform the task into a multi-instance learn-
ing problem. However, this method requires a sparsity factor
μ, which is difficult to evaluate. Shen et al. [14] proposed a
globally-aware multiple instance classifier, which first applied a
low-capacity global model on the whole image to roughly locate
possible lesions, and then utilized a high-capacity module to
extract visual details. However, the coarse localization precision
of possible lesions provided by the low-capacity model could not
be guaranteed. Xie et al. [15] proposed a multi-scale structure
for mammogram classification, enabling the screening of unique
features in lesions of various sizes. However, their method did
not distinctly treat the lesion areas and the background. Gener-
ally, most previous approaches neglect the fact that small local
lesion areas usually have an essential role in mammogram-based
breast cancer diagnosis. In this study, we pay more attention
to those discriminative feature descriptors, which are strongly
associated with small lesion areas.

B. Convolutional Feature Descriptor Selection

Deep convolutional descriptors have been used in many
studies in weakly supervised object localization (WSOL), fine-
grained image recognition, etc. [18], [19], [20]. In most of these
studies, discriminative descriptors are selected according to the
activation map. Zhou et al. [29] proposed a class activation maps
(CAM) approach to obtain the activation map using only image-
level annotations. Selvaraju et al. [30] extended such object lo-
calization abilities by computing gradients of the logits with re-
spect to intermediate feature maps in Grad-CAM. However, both
CAM and Grad-CAM methods utilize post-processing since
they require weights associated with the target-class logit [31].
As a result, they are not flexible in cases when the target image
label is unknown. Some other methods perform channel-wise
average pooling on the input feature maps to obtain the acti-
vation map and then select descriptors based on the activation
map, which does not require any trainable parameters. Wei
et al. [18] proposed the Mask-CNN model, which consisted of a
convolutional architecture to locate the discriminative parts and
generated object/part masks. Tian et al. [32] proposed an iterative

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on November 05,2023 at 19:25:03 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: CONVOLUTIONAL FEATURE DESCRIPTOR SELECTION FOR MAMMOGRAM CLASSIFICATION 1469

Fig. 1. Overall architecture of the proposed method, which is composed of a feature extractor, an AFDS structure, and a logistic regression layer.
F represents the extracted deep feature maps, which include all feature descriptors. F̄ stands for the discriminative representation, which includes
only the discriminative feature descriptors. v is a fixed-length vector, which is obtained by applying average pooling on F̄ .

discrimination CNN, in which region features were extracted
from the original image with higher activation responses. Choe
et al. [20] proposed an attention-based dropout layer (ADL)
for WSOL, which erased the most discriminative regions to
prevent the model from only relying on the most discriminative
parts. They generated the activation map by compressing the
feature maps using channel-wise average pooling. Then they
set a threshold by prefixing a ratio γ of the maximum value to
find discriminative areas. Wei et al. [19] proposed an approach
for the fine-grained image retrieval task. They calculated the
mean value of the activation map as a threshold to decide
which positions localized main objects. However, these methods
simply use the maximum or mean value with a ratio as the
threshold, which could not change adaptively for different data
distributions. Besides, these methods could introduce additional
hyper-parameters. In our study, we propose a novel structure
to automatically extract the discriminative representation for
mammograms based on the distribution of the activation map
without any hyper-parameters.

III. METHODS

A. Overall Architecture

This study designs a deep learning method to automatically
diagnose breast cancer in mammography using image-level
classification labels. Fig. 1 presents the overall architecture
of the proposed method. The feature extractor captures the
deep convolutional feature map from a given mammogram. The
AFDS structure adaptively selects discriminative deep feature
descriptors. And the logistic regression layer is used to compute
the malignancy probability of an input mammogram.

CNNs are employed as the feature extractor, which could
be defined as fe. For the input image x, F = fe(x|θe). F ∈
RC×H×W represents the extracted deep feature maps; C, H ,
and W represent the channel, height, and weight dimensions,
respectively; θe denotes the parameter of the feature extractor.

The feature maps F will be fed into the AFDS structure to
generate a discriminative representation for the input mammo-
gram. The AFDS structure can be formulated as F̄ = fa(F ),
where fa is the mapping of the AFDS structure, and F̄ stands
for the discriminative representation, which includes only the
discriminative feature descriptors. The details of the AFDS
structure will be introduced in the following subsection.

We apply average pooling on F̄ to get a fixed-length vector
v ∈ RC×1×1. And then, we fed v into the linear regression layer
to calculate the probability of malignancy. We treat mammogram
classification as a binary classification task to predict whether
a mammogram contains a malignant lesion or not. The linear
regression layer can be formulated as p = δ(fl(v|θl)), where p
is the probability of malignancy, δ is the sigmoid active function,
and θl denotes the parameter of the linear regression layer.

B. AFDS Structure

This subsection introduces the details of the AFDS structure,
which generates the discriminative representation for a given
mammogram. The principle of the AFDS structure is illustrated
in the middle part of Fig. 1. As previously mentioned, identify-
ing discriminative lesion areas in mammograms is essential to
diagnosis. However, selecting lesion areas from a mammogram
without detection bounding box or segmentation ground truth
is difficult. In this study, we treat the problem as another task:
selecting discriminative feature descriptors from deep feature
maps. Specifically, after obtaining the feature maps F of mam-
mogram x, we generate the activation map A by compressing
the feature maps F using channel-wise average pooling, which
could be computed as (1).

A =

C∑
i=1

Fi, (1)

where Fi is the i− th feature map in the obtained feature maps,
and A ∈ RH×W is the activation map that contains H ×W
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activation responses. Each activation response in A corresponds
to an area in the input mammogram. Because the model is trained
for the classification task, the intensity of each pixel (i, j) inA is
proportional to the discriminative power (probability of malig-
nant) of the corresponding area in the input mammogram. Thus,
the spatial discriminative power of the input mammogram can
be effectively approximated by the distribution of the activation
map.

Next, we calculate a specific threshold t to decide which
feature descriptors are discriminative and could localize targets:
the position (i, j) whose activation response is higher than t is
considered as a discriminative feature descriptor. Based on the
threshold t, a mask map M ∈ RH×W with the same size as A
can be obtained using (2).

Mi,j =

{
1, ifAi,j ≥ t,

0, otherwise,
(2)

where Ai,j is the activation response value at position (i, j) in
A, and Mi,j is the value at position (i, j) in M . The descriptor
Fi,j ∈ RC×1×1 should be kept whenMi,j = 1, which means the
position (i, j) is discriminative and might contain lesions. And
it should be ignored when Mi,j = 0, which means the position
(i, j)might be a background or noisy part. In this way, we obtain
the discriminative representation F̄ , which is aggregated with
the selected feature descriptors. It could be formulated as (3):

F̄ =
{
F(i,j) |Mi,j = 1

}
. (3)

Then, we apply average pooling on F̄ to get a fixed-length
vector v. In the implementation, we perform element-wise mul-
tiplication on the feature maps F and the mask map M . Then
we apply global average pooling on the selected matrix F ◦M .
It can be formulated as (4).

v =
1

S

S∑
i=1

F̄i =
1

S

W∑
i=1

H∑
j=1

(F ◦M)i,j

=
W ×H

S
GAP (F ◦M), (4)

where S is the number of the selected descriptors, ◦ denotes the
element-wise multiplication of two matrices, and GAP is the
global average pooling operation.

Then, the main problem is how to choose an appropriate value
for the threshold t for the purpose of adaptive selecting feature
descriptors (local areas). As previously mentioned, Choe et al.
and Wei et al. [19] simply used the maximum or mean value
with a ratio as the threshold, which could not change adap-
tively for different data distributions. In this study, we observe
that the histogram of a mammogram activation map usually
presents one extremely high peak value due to the lesion areas.
Since the triangle threshold [21] is more suitable under such
conditions [33], it is adopted to calculate a specific threshold
in this study. The triangle algorithm was first proposed in a
chromosome study and used to find the optimal threshold on
a histogram using the geometry method [21]. As illustrated in
Fig. 2, when using the triangle algorithm, a line L is constructed
between the maximum and minimum values on the histogram,

Fig. 2. Triangle algorithm used to select the adaptive threshold t.

which correspond to the brightest and darkest regions on the
image. Then, the value b0, where the distance between H[b0]
and the straight line L is maximal, is selected as the triangle
threshold.

Fig. 3 compares several threshold methods through visu-
alization. The isodata threshold is an iterative technique for
choosing a threshold t to separate foreground and background.
As shown in the second row, the activation maps generated with
this method can roughly localize lesions on malignant samples.
Still, the entire breast area is highlighted for normal/benign
mammograms. This illustrates that although this model is trained
without any annotated lesion information, the model still could
learn discriminative lesion information.

The third row shows that the lesions localized by the isodata
threshold strategy contain the slightest noise or background on
malignant mammograms. However, it may mistake confused
areas (like nipples) as lesions in normal/benign samples. It can be
seen in the fourth row that the mask map generated by the triangle
thresholding strategy locates lesions mixed with a small amount
of noise in malignant mammograms. In addition, it selects the
entire breast area in normal/benign mammograms. As shown
in the last row, the lesions localized by the mean-threshold
strategy contain a great deal of noise and background in ma-
lignant mammograms. Moreover, the mean-threshold strategy
localizes part of the breast without any rules in normal/benign
mammograms. Synthetically, it seems that the isodata threshold
strategy has potential advantages for malignant mammograms
but great limitations for benign mammograms. The triangle
threshold strategy offers a more balanced performance on benign
and malignant mammograms. The mask map generated by the
mean threshold strategy seems to lack regularity. We will carry
out systematic experiments and evaluations on these threshold
strategies in Section IV.

In addition, the proposed AFDS structure can be considered as
a pooling structure. But unlike average pooling, which selects all
features to represent the image, and max-pooling, which selects
the largest value in each channel to represent the image, the
AFDS method only selects discriminative feature descriptors to
represent the entire image.
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Fig. 3. Mammogram samples, activation maps, and mask maps. The first row shows some samples of input mammograms. The lesion area is
masked by red color on the input mammograms. The second row displays corresponding activation maps. The last three rows are the corresponding
mask maps generated by isodata threshold, triangle threshold, and mean threshold. Mammogram samples (a)–(d) are positive (i.e., malignant),
and mammogram samples (e)–(h) are negative (i.e., normal/benign).

C. Loss Function

In this study, we use focal loss [35] as the loss function instead
of the cross-entropy loss, which assigns larger weights to hard
samples. The focal loss could be defined as (5) in this binary
classification problem.

L = α(1− p)γylog(p)− (1− α)pγ(1− y)log(1− p), (5)

where p ∈ [0, 1] represents the model’s estimated probability
of being positive, and y = [0, 1] is the true label of the given
sample. Weight α is added to different terms to control the
ratios between different categories of errors. The parameter γ
indicates the level of attention paid to hard samples. Lin et al.
get the best performance when α = 0.25 and γ = 2. In order
to continuously increase the weight of hard samples during
training, this study dynamically increases the value of γ from 1
to 2.5 during training. Following Lin et al., α is set to 0.25 in
this study.

The process of the proposed AFDS method is shown in
Algorithm 1.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on two commonly used, publicly
available datasets—the INbreast dataset [36] and the CBIS-
DDSM dataset [37].

1) INbreast Dataset: The INbreast dataset contains 410 full-
field digital mammograms from 115 cases. Based on the suspi-
cion level, mammograms are placed into 6 BI-RADS categories.
In this study, we treat categories 0 to 3 as normal/benign and
categories 4 to 6 as malignant. We divide the INbreast dataset
into training and test sets according to the proportion of 4:1. Each
subset keeps the consistency of the original data distribution
as much as possible. Then we utilize 5-fold cross-validation
to evaluate different models, which improves the stability and
reliability of the evaluation results. The statistic of this dataset
is shown in Table I.

2) CBIS-DDSM Dataset: The CBIS-DDSM (Curated Breast
Imaging Subset of DDSM) dataset consists of decompressed
images and precise annotations, containing 3,103 images from
1,645 patients. We divide the CBIS-DDSM dataset according
to its original database. The statistic of this dataset is shown in
Table I.

In the pre-processing procedure, we resize the mammogram
to the size of 1350 × 950 pixels and then randomly crop it to
1280 × 896 pixels in the training set to reduce the influence
of over-fitting. In the test set, it is center cropped to 1280 ×
896 pixels after resizing. We utilize augmentation methods, such
as random rotation from -30 to +30 degrees, random vertical
flip, and random horizontal flip, to train the model sufficiently.
We normalize the augmented data to [0,1] by the mean and
variance. We do not use any technology to locate the breast
and remove the background from mammograms before feeding
the mammograms into the model, because the proposed method
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Algorithm 1: The Process of the Proposed AFDS Method.
Input:

Dataset: D = {(xi, yi); i = 1, 2, . . . , N};
The maximum epoch: T ;
The learning rate: lr.

Output:
The learned parameters: θ = {θe, θl}.

1: for epoch e = 1 : T do
2: for sample i = 1 : N do
3: Pre-processing and augmenting on image xi;
4: Extracting feature maps Fi of image xi through

Fi = fe(xi|θe);
5: Calculating the activation map Ai using (1);
6: Calculating the threshold t by the triangle

algorithm;
7: Calculating the mask map Mi using (2);
8: Generating discriminative representation F̄i using

(3);
9: Applying average pooling on F̄i to get the

fixed-length vector vi;
10: Inputting vi into the linear regression layer to

calculate the malignant probability pi of xi;
11: Calculating the focal loss L using (5);
12: Calculating gradients of L to parameters θ;

13: Updating parameters θ : θ ← θ − lr · ∂L
∂θ

.

14: end for
15: end for

TABLE I
CATEGORY DISTRIBUTIONS OF TWO DATASETS

is intended to select the discriminative descriptors that could
automatically remove the background and noise.

B. Metrics

Following most medical image classification work, we use
ACC (accuracy) [38], ROC (receiver operating characteris-
tic) [39], AUC (area under the ROC curve) [40], sensitivity [38],
specificity [38], and ECE (expected calibration error) [41] as
evaluation metrics in this study.

ACC is the ratio between the number of correctly classified
samples and the total number of samples in the evaluation
dataset, as shown in (6).

ACC =
TP + TN

TP + TN + FP + FN
, (6)

where TP (true positive) denotes the number of correctly classi-
fied positive samples, TN (true negative) denotes the number of
correctly classified negative samples, FP (false positive) is the
number of samples incorrectly classified as positive, FN (false

negatives) indicates the number of samples incorrectly classified
as negative.

The specificity is calculated as the number of correct negative
predictions divided by the total number of negatives, as shown
in (7).

specifcity =
TN

TN + FP
. (7)

The sensitivity is calculated as the number of correct positive
predictions divided by the total number of positives, as shown
in (8).

sensitivity =
TP

TP + FN
, (8)

ROC curve is a graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination thresh-
old is varied.

AUC is the area under the ROC curve. It is a classification
function that expresses the probability that a randomly selected
positive example gets a higher score than a randomly selected
negative example.

To verify the confidence and uncertainty [42] of the pro-
posed model, we also conduct ECE performance tests. ECE
is a weighted average of the absolute difference between the
accuracy and confidence of each bin. The calculation of ECE is
shown in (9).

ECE =

B∑
b=1

|nb|
N

,

∣∣∣∣acc(b)− conf(b)

∣∣∣∣ (9)

where B is the number of bins, nb is the number of predictions
in bin b, and N is the total number of data points. acc(b) and
conf(b) are the accuracy and confidence of bin b, respectively.

C. Experimental Design

We experimented with CUDA 10.1 on an Ubuntu server with
two NVIDIA Tesla V100 GPUs. Pytorch with python is used
to construct and train the proposed model. The model is trained
for 100 epochs with the Adam optimizer [43] end to end. The
momentum and weight decay for Adam are both set to 5× 10−5

empirically. The learning rate for the feature extractor layer is
initialized to 5× 10−5 and decayed every 5 epochs with a decay
rate of 0.9. For the logistic regression layer, the learning rate is
initialized to 1× 10−4 and decayed every 5 epochs with a decay
rate of 0.85.

The batch size is 8. We choose the pre-trained
DenseNet169 [44] with ImageNet to serve as the feature
extractor. The shape of the feature maps is 1664 × 40 × 28.

D. Ablation Experiments

We evaluate three different threshold strategies for the AFDS
structure, including the isodata threshold strategy, the triangle
threshold strategy, and the mean threshold strategy. As shown
in Fig. 3, different threshold strategies could generate different
mask maps, then make the selected feature descriptors different,
which further affects the performance of the model.
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TABLE II
ABLATION EXPERIMENT RESULTS OF AFDS STRUCTURE WITH THREE

THRESHOLD STRATEGIES

Fig. 4. ROC curve of the AFDS structure with three threshold strate-
gies on one partition of the INbresast dataset.

Fig. 5. ROC curve of the AFDS structure with three threshold strate-
gies on the CBIS-DDSM dataset.

From Table II, Figs. 4 and 5, it can be seen that different
threshold strategies have different effects on the performance
of the model. The triangle threshold strategy yields the best
ACC and AUC for both the INbeast and the CBIS-DDSM
datasets. This result is consistent with the previous discussion
in Section III. The AFDS structure with isodata threshold does
not perform well because, although it localizes more precise
lesions on malignant samples, the nipple is often incorrectly
extracted as a lesion in normal/benign mammogram samples.
Meanwhile, the AFDS structure with the mean threshold strat-
egy does not perform well because the mask map generated
by the mean threshold cannot localize precise lesions without

TABLE III
COMPARISON OF AFDS STRUCTURE WITH COMMONLY USED POOLING

STRUCTURES

Fig. 6. ROC curve of the three pooling structures on one partition of
the INbresast dataset.

noise and seems to lack regularity. The mask map generated
using the triangle threshold localizes lesions mixed with little
noise or background in malignant mammogram samples and
selects the entire breast in normal/benign mammogram samples.
This allows the model to perform well on both malignant and
normal/benign mammogram samples, thereby improving the
performance of the model.

E. Comparative Experiments

Because the proposed AFDS structure can be considered as
a novel pooling structure, we compare the performance of the
proposed AFDS structure with the max-pooling and the average-
pooling structures on the INbreast and CBIS-DDSM datasets.

According to Table III, Figs. 6 and 7, it can be seen the
model with the AFDS structure obtains better performance
on both INbreast and CBIS-DDSM datasets. We believe it is
because the proposed AFDS structure selects discriminative fea-
ture descriptors to represent the whole image, which makes the
model more efficient and robust. In contrast, the average-pooling
structure selects all features to represent the image. But the
areas of interest only take a few parts suspected of containing
malignant lesions. Therefore, the average-pooling structure that
performs well on natural images may not suit the mammogram
classification task. The max-pooling structure selects the unique
maximum value in each channel to represent the image, which
does not take full advantage of all lesion areas and increases the
negative impact of confounding areas, such as nipples.
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Fig. 7. ROC curve of the three pooling structures on the CBIS-DDSM
dataset.

Fig. 8. Visualization results of some extreme cases. The first row is
a sample of a mammogram, on which the lesion area is masked by
red color. The second row shows the corresponding activation maps.
The last three rows are the corresponding mask maps generated by the
isodata threshold, triangle threshold, and mean threshold.

Next, we compare the proposed method with state-of-the-
art mammogram classification methods, such as densenet169,
RGP, and GGP proposed by Shu et al. [12], MIL proposed by
Zhu et al. and MS proposed by Xie et al. [15], on the INbreast
dataset. For a fair comparison, we implement these methods
and conduct experiments under the same data pre-processing,
dataset partition, backbone, and parameter settings. We use the

TABLE IV
COMPARISON OF PROPOSED METHOD WITH STATE-OF-THE-ART METHODS

ON THE INBREAST DATASET

symbol * to identify the re-implemented version, e.g., MIL*.
The results reported in their paper are also listed.

From Table IV, it can be seen that the proposed method
obtained the best performance on AUC (97.2%), ACC (92.4%),
specificity (97.4%), and ECE (0.7), outperforming state-of-the-
art methods. For Shu et al.’s method, the AUC performance in
the re-implemented version is slightly higher than that reported
in their paper, and the ACC performance is almost the same. We
think this should be caused by the higher-resolution images used
in our study. For the method proposed by Xie et al., the ACC and
AUC performance in the re-implemented version are lower than
their reported ones, which may be caused by different data pre-
processing methods performed in their experiment. They used
the breast region segmentation (BRS) module to pre-process
input images. This study focused on the model’s performance,
so we did not use any additional data pre-processing method in
our experiments.

Finally, we compare the proposed method with state-of-the-
art mammogram classification methods, such as RGP and GGP
proposed by Shu et al. [12], MIL proposed by Zhu et al., MS
proposed by Xie et al. and GMIC proposed by Shen et al. [14],
on the CBIS-DDSM dataset.

From Table V, it can be seen that the proposed AFDS
method obtained the best performance on ACC (79.7%), AUC
(86.2%), sensitivity (74.6%), and ECE (0.54). Because the
model proposed by Shen et al. is not trained end to end, we
did not implement it in this study. Shen et al. reported that
the GMIC method achieved an AUC performance of 84.0%
using GMIC-ResNet18. They also applied the model ensemble
to further improved the AUC performance to 85.8%. However,
our method outperforms both their single GMIC model and
ensemble models. For Shu et al.’s method, the re-implemented
versions perform better than they reported, which is the same as
the experiments on the INbreast dataset. Xie et al. and Zhu et al.
did not report the performances on the CBIS-DDSM dataset. In
our re-implemented version, the proposed ADFS method still
outperforms them on most of the metrics.

F. Discussion

This study compares the proposed method with state-of-the-
art methods on two publicly available datasets. Experimental
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TABLE V
COMPARISON OF PROPOSED METHOD WITH STATE-OF-THE-ART METHODS ON THE CBIS-DDSM DATASET

TABLE VI
TIME CONSUMPTION OF DIFFERENT METHODS

results have demonstrated that the proposed method outper-
forms state-of-the-art methods on different metrics such as ACC,
AUC, and ECE. In the experiments on the INbreast dataset,
the proposed method outperforms other methods except for
sensitivity. And on the CBIS-DDSM dataset, the AFDS method
is superior to other methods except for specificity. Nevertheless,
the proposed method outperforms state-of-the-art methods by
1-2 points in the AUC evaluation under the same conditions.
AUC is a measure of the overall performance and is interpreted
as the average value of sensitivity for all possible values of
specificity [45]. These results indicate that the proposed method
has a better overall ability for mammogram classification. In
addition, the proposed model also performs best in the ECE
evaluation, which proves the advantages of the proposed model
in terms of confidence and uncertainty.

To evaluate the complexity and time consumption of the
proposed method, we further compare the time consumption
of our model with state-of-the-art methods, other threshold
methods, and the vanilla DenseNet169 network. The hardware
used in the experiments is a Tesla V100 GPU. The results are
shown in Table VI. Compared with the DenseNet169 network,
the proposed structure only increases the computation time by
0.38 ms. And it only increases by 0.25 ms compared with the
mean threshold. It shows that the calculation of the triangle
threshold is not expensive or even could be negligible.

To further discuss the capabilities and inadequacies of the
model, some extreme samples are visualized in Fig. 8. Samples
(a) and (b) contain very large lesions. Sample (c) contains a

normal-sized lesion. The lesion in sample (d) is quite small. All
those four samples are malignant.

As shown in Fig. 8, the triangle threshold method always
produces a mask map covering the entire breast in cases with
extremely large or small lesions. In contrast, the areas selected
by the isodata method cannot cover the entire lesion area
(Fig. 8(a)) and may even be misled to select some non-lesion
areas (Fig. 8(b)). The areas selected by the mean threshold are
always very irregular. These results indicate that the triangle
method also has advantages in these extreme cases.

Although the proposed method has achieved convincing re-
sults, there also have some limitations. The triangle threshold
tends to produce a more oversized mask map to cover the entire
breast in cases with extremely large or small lesions. And it
always generates a mask map mixed with noise in cases with
normal-sized lesions. In contrast, the mask map generated by the
isodata threshold seems to contain less noise for normal-sized
malignant lesions, but the performance degrades in malignant
cases with large/small lesions or normal/benign cases. This
phenomenon provides some ideas for future research. In future
work, we plan to find ways to improve the precision of mask
maps for malignant lesions, and convert the classification prob-
lem into the weakly supervised object localization(WSOL) task.

V. CONCLUSION

This study proposes an image-level label-based deep-learning
method for breast cancer diagnosis in mammography. For this
method, this study designs a novel AFDS structure to select
discriminative feature descriptors (lesion areas) adaptively. The
AFDS structure employs the triangle threshold strategy to com-
pute a threshold for guiding the activation map to determine
which feature descriptors are discriminative. Visualization re-
sults demonstrate that the proposed AFDS structure makes it
easier for models to learn the difference between malignant and
normal/benign samples. Experiment results indicate the effec-
tiveness and robustness of the proposed method. Furthermore,
the AFDS structure can be easily plugged into most existing
CNN models with negligible effort and time consumption. Nev-
ertheless, the produced masks have some limitations, such as
introducing noise in the mask map of malignant cases. We will
explore the rules and improve them in future work.
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